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This approach follows Green [1] and requires identifiying the ”sweet points”,
that is the points associated with the minimum expected variance of the slope
estimate. For the slopes there are two such points, placed above and below
the threshold. Following Green [1], one can compute them by treating the
psychometric function as locally linear.
In our case the psychometric function is

P (x) = λ+ (1− 2λ)Φ(x) (1)

where

Φ(x) =
1

2

[
1 + erf

(
x− µ√

2σ

)]
(2)

Having an estimates of the parameters (µ̂, σ̂, and λ̂), one can select the
stimulus which will minimize the expected variance of each one of them.
Treating the psychometric function as locally linear (for a line y = ax+ b the
variance of y is equal to a2 times the variance of x), the expected variance of
the estimate of σ̂ can be computed as

V ar(σ̂) =
P (x) [1− P (x)](

d
dσ
P (x)

)2 (3)

Using the psychometric function defined in equation 1 and 2, one can compute
the expected variance of the slope as

V ar(σ̂) =
πσ4e(

x−µ
σ )

2 [
1− (1− 2λ)2erf

(
x−µ√
2σ

)]
2(1− 2λ)2(x− µ)2

(4)

In fig. 1 I plotted the expected variance as a function of the probability
predicted by the psychometric function (left panel) and as a function of the
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Figure 1: Expected variance of the estimated slope σ̂, for different values of
the parameter λ, plotted as a function of the probability predicted by the
psychometric function on the left, and as a function of the stimulus on the
right. (For this plot and the one in fig. 2 I used µ = 0 and σ = 1.) The
”sweet points” are the minima of the expected variance.

stimulus (right panel), for different levels of the parameter λ, which gives
the probability of lapses, or random responses. With increasing values of λ,
the ”sweet points”, that is the minima of the function giving the expected
variance for the slope, are shifted toward the threshold (µ = 0).

Hence a simple maximum-likelihood adaptive procedure could be to use
the sweet points as next stimuli location. This would correspond to choos-
ing stimuli that minimize the expected variance of the parameter estimates
(rather than the expected entropy of the joint parameter probability density,
as in Quest+ [2]). One could start with few random trials, then obtain an
estimate of the parameters by maximum likelihood, and presents the follow-
ing stimuli at the sweet points (updating the ML estimates after each trial).
The expected variance of the parameter λ does not have a minimum (it keeps
decrease as one moves away from the threshold), so to estimate it properly
one could include some trials at very high stimulus value. The sweet point
for the mean µ is the mean itself (see fig. 2), and one could present a fraction
of stimuli at the estimated threshold.
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Figure 2: Expected variance of the estimated mean µ̂, for different values of
the parameter λ.

In fig. 3 is shown 100 trials of such adaptive procedure: 20 random trials
followed by a series of trials where the stimulus is placed at one (randomly)
of the two sweet points, or at the mean (with probability 1/4). The prob-
ability of lapses is in this case taken into account, and estimated after each
trial.This method is heuristic in some aspects (e.g. deciding which sweet
point should be tested next) but has the advantage that can be modulated
so as to improve specifically the estimates of the slopes (a the expenses of
the other parameters).
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Figure 3: Adaptive maximum-likelihood estimation of a psychometric func-
tion. Left panel: likelihood density over the parameter after 100 trials. Right
panel: stimuli placement, filled dots indicate ’+’ responses from a simulated
observer with probability of lapsing λ = 0.01.
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